cours de transformation de fourier et laplace en analyse

transformation de fourier et laplace en analyse

transformation de fourier et laplace

Les termes des séries de Fourier sont des fonctions sinusoïdales et cosinusoïdales. A nouveau, on aperçoit l'importance de l'analyse harmonique des systèmes, puisque la pertinence de ces décompositions est garantie pour tout système linéaire (principe de superposition).

La transformation de Fourier a déjà été signalée comme un cas particulier mathématique de la transformation de Laplace. Elle est très employée dans toutes les branches techniques avec des implications vastes et diverses : des relations d'incertitudes en physique aux espaces réciproques en cristallographie, en passant bien sûr par l'électricité. Pour cette seconde partie du chapitre, nous nous bornons à la définition de la transformation de Fourier où l'on aborde la notion de spectre d'un signal. Pour plus vaste information, nous conseillons au lecteur de se reporter à une introduction au traitement de signal, domaine où cet outil mathématique est indispensable.

télécharger cours  transformation de fourier et laplace

trois cours différent

Comments